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Motivation for Data-driven Safety Filters Learn new model & policy at deployment time
Main two limitations of traditional safety filters based on certificate functions: Robust/zero-shot policies trained in simulation assume access to the distribution of the real-world data
o Such for high-dimensional and hybrid systems. o There will always be new situations (e.g., corner cases) not seen at training time
o Such safety filters are of the actual plant. - Re-learn dynamical models and policies at deployment time
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» Classical safety filters based on CBFs (CBF-QP) » [4]: HJ reachability frameworks for systems Environment 7 — f Cautious exploration
is designed based on the system model. involving transitions between multiple modes.
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has probabilistic safety guarantee [1, 2, 3].
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Dynamics: Gaussian process + informed prior

-1.04 : : : : ‘
052 -0312 0104 0104 0312 052
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<40 T cwareone | * On-going work: Extending [5] to high-dimensional » Achieve O(NN) complexity with dataset size
= 20 hybrid systems by using neural-network-based « Data-driven prior imposes less structure than white priors
01 D— approximate dynamic programming [0].
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Application: of NASA Tiltwing Concept Vehicle (eVTOL) [7] m§+)1 B4 * Posterior Toy example
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Motivation: The need for efficient and automated i1 . Bg ~ N (Ba; i1, X) Goal-reaching task with unknown disturbance

* Model prediction error as triggering mechanism
Proposed Framework [8]: HJ reachability analysis Flight test & Data Collection Ba ~ N(ma, Aa)

] Evidence using GP model 1
Verification of the flight envelope * Random Fourier Features [3] | System 1. Policy 1
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