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Model-based Continual Learning For Quadruped Locomotion

• Achieve            complexity with dataset size 
• Data-driven prior imposes less structure than white priors

Learn new model & policy at deployment time

Robust/zero-shot policies trained in simulation assume access to the distribution of the real-world data 
◦ There will always be new situations (e.g., corner cases) not seen at training time 
◦ Re-learn dynamical models and policies at deployment time

Dynamics: Gaussian process + informed prior
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Learn new model & policy 
using Model-based RL [1]
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• Random Fourier Features [3]

GP model [2]

• Posterior
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Spectral density: data-driven

Toy example

• Goal-reaching task with unknown disturbance 
• Model prediction error as triggering mechanism
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Motivation for Data-driven Safety Filters
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References

Application: Flight Envelope Protection of NASA Tiltwing Concept Vehicle (eVTOL) [7]

Main two limitations of traditional safety filters based on certificate functions: 
◦ Such certificate functions are hard to verify for high-dimensional and hybrid systems. 
◦ Such safety filters are not robust to the uncertainties of the actual plant.
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GP-regression based safety filter HJ reachability analysis for hybrid systems [4, 5]

Motivation: The need for efficient and automated flight test pipeline for eVTOL control system development.
Proposed Framework [8]:

• Classical safety filters based on CBFs (CBF-QP) 
is designed based on the system model.

s.t. ḃB(x, u) + �B(x) � 0

Model-based estimate of true Ḃ(x, u)

• With the collected data                         , 
model-plant mismatch term  
can be learned by GP regression, which results 
in GP-CBF-SOCP safety filter that is convex and 
has probabilistic safety guarantee [1, 2, 3].

{(xk, uk, ẋk)}Nk=1

�(x, u) := Ḃ(x, u)� ḃB(x, u)

ḃB(x, u) + µ(x, u)� �(�)�(x, u) + �B(x) � 0

• Example: Adaptive Cruise Control [2, 3]
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    Verification of the flight envelope 
based on the current model   ̂fk(x, u, d)Main Challenges 

Hybrid system (hover vs. cruise) 
High-dimensional system. 

Near-term Deliverable 
Apply HJ reachability to the  

reduced-order model of Tiltwing.

• [5]: HJ reachability frameworks are extended to 
hybrid systems with discontinuous reset maps 
by incorporating the value remapping principle. 

• Applied to the stabilization of walking robots. 
• Example: Compass-gait walker

• [4]: HJ reachability frameworks for systems 
involving transitions between multiple modes.

• On-going work: Extending [5] to high-dimensional 
hybrid systems by using neural-network-based 
approximate dynamic programming [6].
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