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~ Motivation: Quadrupedal navigation in uncertain terrains —  ~ Take Home N  Results: Real quadruped detects OoD terrains ~

» Goal M Deployed on-line out-of-distribution detection on a real quadruped
™ Improved long-term prediction capabilities by informing kernel with
simulation data

7 Simulation-informed Gaussian process state-space model
Detect out-of-distribution (OoD) environments
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o . ™ Proposed novel kernel design framework, simulator-agnostic
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model . - 0 otherwise .
dict observations J= us: com velocity Uy Ugy1 Ut 42
predictions > Samples of posterior dynamics are “callable” B Posterior at cost O(INM?)
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2 Challenges f(x) = Zﬁjqu(a:) BID ~ N (p, %) 2 Training phase
1. Well-calibrated uncertainties (no overconfidence): epistemic+aleatoric \ 7=1 y Kernel informed with walking circular trajectories
2. On-line deployment requires fast predictions Embeddi or inf ti 2 M I |
3. Learning requires data-efficiency for re-training — EMmbedding prior intformation via Viercer kerne ) > Test phase
4. OoD metric computationally efficient and probability-based 2 Kernel given as a finite sum of features [2] Robot deployed on a variety of terrains to test its OoD-detection capabilities
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_ _ & Op€ pullig
k(x,z) = Zvjqu ()¢;(T) , v; >0 decreasing sequence P — 1.0
~ Approach ~ i—1 / |
2 Architecture: Input embedding and Fourier features /
2 1. Represent real dynamics using a Gaussian process state-space model (GPSSM) [4] | 0.8
Froat ) 2 Fourier features )
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2 2. Use equivalent series expansion of a Gaussian process / 2 Prior variance proportional to wave N\ Ve X“?
x r o = . @_, f(x) amplitude [1] v; o< S(w;) \ { .
Standard GP Karhunen—Loeve expansion GP y » Phase @, ~ U(—m, ) / . }2 |
Inference  O(N®) Inference  O(N) ? Mean m,; =1/M ~__~" O '0.0
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Predictions > O(HN") Predictions  O(H) 2 Train by moment-matching simulation data 71 [m)
» Empirical validation
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. , , L , S mq}n/ B fsim (@), Z m;¢; ()| + AllVar | fom(2) Z Vi 9] (@)] I Well-calibrated uncertainties: If the observations don’t match the predictions,
2 3. Increase data-efficiency by constructing a simulation-informed prior TEX - -

- ’ ’ Y, it's because the environment is OoD, and not because the model is wrong

Simulate roll-outs

. . . . . . Our model consistently reflects OoD scenarios, outperforming GPSSM models
~ Simulation-informed priors are overconfident/stiff ~ gwitr\ o dar kerlnels 4 5 O "9
Construct informed kernel 2 Fix by adding a standard kernel [3]
Frequency of out of distribution detection : .
Mo Tute) g Fam(@:0) =022 Jroa(®) = D B;0;(2), B; ~ N(U/M,v/M) , 65(x) = 2° et £oon() > 0.5

SHIATY j Walking Rope  Rocky Poking

0 ~U(—-1,1) informed kernel  k(z, %) = va T Ours 1.8%  66.7% 64.4%  79.0%

GPSSM |  87% 92.5%  98.7%  97.3%

Sim-Informed Prior freal(x) = 0.927 freal(x) = 0.92% 4 d 5> Future work
2 4.Compare the distribution over predicted states before and after observations ' . .
O Integrate stochastic MPC and planning
Prior over future states Posterior over past states ~_ - v O Use OoD detection to behave safely and trigger new model learning
Yt H p(@eort vrr) —e— O Learn a dictionary of models, one for each environment
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