

On-line out-of-distribution detection using simulation-informed deep Gaussian process state-space models

 $x_{t+1} \longrightarrow x_{t+2} \longrightarrow x_{t+3}$

Rope pulling

 y_{t+3}

Alonso Marco and Claire J. Tomlin

Motivation: Quadrupedal navigation in uncertain terrains —

▶ Goal Detect out-of-distribution (OoD) environments on-the-fly [1]

Challenges

- 1. Well-calibrated uncertainties (no overconfidence): epistemic+aleatoric
- 2. On-line deployment requires fast predictions
- 3. Learning requires data-efficiency for re-training
- 4. OoD metric computationally efficient and probability-based

Approach

▶ 1. Represent real dynamics using a Gaussian process state-space model (GPSSM) [4]

$$x_{t+1} = f_{\text{real}}(x_t, u_t) + x_t$$
$$f_{\text{real}}(x_t, u_t) \sim \mathcal{GP}(0, k(\cdot, \cdot))$$

▶ 2. Use equivalent series expansion of a Gaussian process

Predictions $> O(HN^3)$

Karhunen–Loève expansion GP Inference O(N)Predictions O(H)

▶ 3. Increase data-efficiency by constructing a simulation-informed prior

▶ 4.Compare the distribution over predicted states before and after observations

Take Home

- Deployed on-line out-of-distribution detection on a real quadruped
- Improved long-term prediction capabilities by informing kernel with simulation data
- Proposed novel kernel design framework, simulator-agnostic

Karnhunen-Loève expansion of Gaussian process

Embedding prior information via Mercer kernel —

Bayesian linear model with deterministic features

Kernel given as a finite sum of features [2]

 $x \quad \Psi \quad \xrightarrow{z} \quad \longrightarrow \quad \Sigma \longrightarrow f(x)$

Train by moment-matching simulation data

Fix by adding a standard kernel [3]

White prior

 $\theta \sim \mathrm{U}(-1,1)$

Sim-Informed Prior

Architecture: Input embedding and Fourier features

$$f(x) = \sum_{j=1}^{M} \beta_j \phi_j(x) \quad \beta_j \sim \mathcal{N}(m_j, \nu_j) \quad \mathbb{C}\text{ov}[\beta_i, \beta_j] = \begin{cases} \nu_j & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

 $k(x,\bar{x}) = \sum \nu_j \phi_j(x) \phi_j(\bar{x}) \;,\; \nu_j > 0 \;\;$ decreasing sequence

 $\arg\min_{\Psi} \int_{x\in\mathcal{X}} ||\mathbb{E}\left[f_{\text{sim}}(x)\right] - \sum_{j} m_j \phi_j(x)|| + \lambda ||\mathbb{V}\text{ar}\left[f_{\text{sim}}(x)\right] - \sum_{j} \nu_j \phi_j^2(x)||$

 $f_{\text{sim}}(x;\theta) = \theta x^2$ $f_{\text{real}}(x) = \sum \beta_j \phi_j(x), \ \beta_j \sim \mathcal{N}(1/M, \nu/M), \ \phi_j(x) = x^2$

 $f_{\rm real}(x) = 0.9x^2$

Simulation-informed priors are overconfident/stiff

Fourier features

 $\phi_j(x) = \cos(\omega_j^{\top} \Psi(x) + \varphi_j)$

Prior variance proportional to wave

ightharpoonup Spectral density $\omega_j \sim S(\omega)$

amplitude [1] $\,
u_j \propto S(\omega_j)$

ightharpoonup Phase $\varphi_j \sim \mathrm{U}(-\pi,\pi)$

ightharpoonup Mean $m_i=1/M$

Informed kernel $k(x, \bar{x}) = \nu x^2 \bar{x}^2$

 $f_{\text{real}}(x) = 0.9x^2 + d$

 \triangleright Samples of posterior dynamics are "callable" \triangleright Posterior at cost $O(NM^3)$

$$= \sum_{j=1} \hat{\beta}_j \phi_j(x)$$

 $\hat{eta}|\mathcal{D} \sim \mathcal{N}(\mu, \Sigma)$

Kernel informed with walking circular trajectories

Results: Real quadruped detects OoD terrains

Simulation-informed Gaussian process state-space model

 $f_d(x_t, u_t) = \beta_d^{\mathsf{T}} \Phi_d(x_t, u_t)$

 $f(\cdot) = [f_1(\cdot), \dots, f_D(\cdot)]^{\top}$

 x_t : position, orientation

 u_t : com velocity

 $x_{t+1} \sim \mathcal{N}(f(x_t, u_t), Q)$

 $y_t \sim \mathcal{N}(x_t, R)$

Test phase

Training phase

Robot deployed on a variety of terrains to test its OoD-detection capabilities

Empirical validation

- **Well-calibrated uncertainties**: If the observations don't match the predictions, it's because the environment is OoD, and not because the model is wrong
- Our model consistently reflects OoD scenarios, outperforming GPSSM models with standard kernels

Frequency of out of distribution detection $\mathcal{L}_{\text{OoD}}(\cdot) > 0.5$

	Walking	Rope	Rocky	Poking
Ours	1.8%	66.7%		
GPSSM	87%	92.5%	98.7%	97.3%

Future work

- Integrate stochastic MPC and planning
- Use OoD detection to behave safely and trigger new model learning
- Learn a dictionary of models, one for each environment

- References

[1] Marco A., Morley E., Tomlin C. J. (2023). Out of Distribution Detection via Domain Informed Gaussian Process State Space Models. IEEE 62nd Conference on Decision and Control (CDC), (under review).

[2] Solin, A. and Särkkä, S., 2020. Hilbert space methods for reduced-rank Gaussian process regression. Statistics and Computing, 30(2), pp.419-446.

[3] Marco, A., Hennig, P., Schaal, S. and Trimpe, S., 2017, December. On the design of LQR kernels for efficient controller learning. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC) (pp. 5193-5200). IEEE. [4] Frigola, R., Chen, Y. and Rasmussen, C.E., 2014. Variational Gaussian process state-space models. Advances in neural

information processing systems, 27.